
789

State-Coupled Replicator Dynamics

Daniel Hennes
Eindhoven University

of Technology
P.O. Box 513, 5600 MB,

Eindhoven, The Netherlands
d.hennes@tue.nl

Karl Tuyls
Eindhoven University

of Technology
P.O. Box 513, 5600 MB,

Eindhoven, The Netherlands
k.p.tuyls@tue.nl

Matthias Rauterberg
Eindhoven University

of Technology
P.O. Box 513, 5600 MB,

Eindhoven, The Netherlands
g.w.m.rauterberg@tue.nl

ABSTRACT

This paper introduces a new model, i.e. state-coupled repli-
cator dynamics, expanding the link between evolutionary
game theory and multiagent reinforcement learning to multi-
state games. More precisely, it extends and improves pre-
vious work on piecewise replicator dynamics, a combination
of replicators and piecewise models. The contributions of
the paper are twofold. One, we identify and explain the ma-
jor shortcomings of piecewise replicators, i.e. discontinuities
and occurrences of qualitative anomalies. Two, this analysis
leads to the proposal of the new model for learning dynamics
in stochastic games, named state-coupled replicator dynam-
ics. The preceding formalization of piecewise replicators -
general in the number of agents and states - is factored
into the new approach. Finally, we deliver a comparative
study of finite action-set learning automata to piecewise and
state-coupled replicator dynamics. Results show that state-
coupled replicators model learning dynamics in stochastic
games more accurately than their predecessor, the piecewise
approach.

Categories and Subject Descriptors

I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms

Algorithms, Theory

Keywords

Multi-agent learning, Evolutionary game theory, Replicator
dynamics, Stochastic games

1. INTRODUCTION
The learning performance of contemporary reinforcement

learning techniques has been studied in great depth exper-
imentally as well as formally for a diversity of single agent
control tasks [5]. Markov decision processes provide a math-
ematical framework to study single agent learning. However,
in general they are not applicable to multi-agent learning.
Once multiple adaptive agents simultaneously interact with
each other and the environment, the process becomes highly
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dynamic and non-deterministic, thus violating the Markov
property. Evidently, there is a strong need for an adequate
theoretical framework modeling multi-agent learning. Re-
cently, an evolutionary game theoretic approach has been
employed to fill this gap [6]. In particular, in [1] the au-
thors have derived a formal relation between multi-agent
reinforcement learning and the replicator dynamics. The
relation between replicators and reinforcement learning has
been extended to different algorithms such as learning au-
tomata and Q-learning in [7].

Exploiting the link between reinforcement learning and
evolutionary game theory is beneficial for a number of rea-
sons. The majority of state of the art reinforcement learning
algorithms are blackbox models. This makes it difficult to
gain detailed insight into the learning process and parameter
tuning becomes a cumbersome task. Analyzing the learning
dynamics helps to determine parameter configurations prior
to actual employment in the task domain. Furthermore, the
possibility to formally analyze multi-agent learning helps to
derive and compare new algorithms, which has been success-
fully demonstrated for lenient Q-learning in [4].

The main limitation of this game theoretic approach to
multi-agent systems is its restriction to stateless repeated
games. Even though real-life tasks might be modeled state-
lessly, the majority of such problems naturally relates to
multi-state situations. Vrancx et al. [9] have made the first
attempt to extend replicator dynamics to multi-state games.
More precisely, the authors have combined replicator dy-
namics and piecewise dynamics, called piecewise replicator
dynamics, to model the learning behavior of agents in stochas-
tic games. Recently, we have formalized this promising proof
of concept in [2].

Piecewise models are a methodology in the area of dy-
namical system theory. The core concept is to partition the
state space of a dynamical system into cells. The behavior
of a dynamical system can then be described as the state
vector movement through this collection of cells. Dynam-
ics within each cell are determined by the presence of an
attractor or repeller. Piecewise linear systems make the as-
sumption that each cell is reigned by a specific attractor and
that the induced dynamics can be approximated linearly.

In this work, we demonstrate the major shortcomings
of piecewise modeling in the domain of replicator dynam-
ics and subsequently propose a new method, named state-
coupled replicator dynamics. Grounded on the formalization
of piecewise replicators, the new model describes the direct
coupling between states and thus overcomes the problem of
anomalies induced by approximation.
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The rest of this article is organized as follows. Section 2
provides background information about the game theoreti-
cal framework and the theory of learning automata. In Sec-
tion 3 we formally introduce piecewise replicator dynamics
and hereafter discuss their shortcomings in Section 4. Sec-
tion 5 presents the new state-coupled model and delivers a
comparative study of piecewise and state-coupled replicator
dynamics to learning automata. Section 6 concludes this
article.

2. BACKGROUND
In this section, we summarize required background knowl-

edge from the fields of multi-agent learning and evolutionary
game theory. In particular, we consider an individual level
of analogy between the related concepts of learning and evo-
lution. Each agent has a set of possible strategies at hand.
Which strategies are favored over others depends on the ex-
perience the agent has previously gathered by interacting
with the environment and other agents. The pool of possi-
ble strategies can be interpreted as a population in an evo-
lutionary game theory perspective. The dynamical change
of preferences within the set of strategies can be seen as
the evolution of this population as described by the repli-
cator dynamics (Section 2.1). We leverage the theoretical
framework of stochastic games (Section 2.2) to model this
learning process and use learning automata as an example
for reinforcement learning (Section 2.3).

2.1 Replicator dynamics
The continuous time two-population replicator dynamics

are defined by the following system of ordinary differential
equations:

dπi

dt
=
ˆ
(Aσ)i − π′Aσ

˜
πi

dσi

dt
=
ˆ
(Bπ)i − σ′Bπ

˜
σi ,

(1)

where A and B are the payoff matrices for player 1 and
2 respectively. The probability vector π describes the fre-
quency of all pure strategies (replicators) for player 1. Suc-
cess of a replicator i is measured by the difference between
its current payoff (Aσ)i and the average payoff of the entire
population π against the strategy of player 2: π′Aσ.

2.2 Stochastic games
Stochastic games allow to model multi-state problems in

an abstract manner. The concept of repeated games is gen-
eralized by introducing probabilistic switching between mul-
tiple states. In each stage, the game is in a specific state fea-
turing a particular payoff function and an admissible action
set for each player. Players take actions simultaneously and
hereafter receive an immediate payoff depending on their
joint action. A transition function maps the joint action
space to a probability distribution over all states which in
turn determines the probabilistic state change. Thus, simi-
lar to a Markov decision process, actions influence the state
transitions. A formal definition of stochastic games (also
called Markov games) is given below.

Definition 1. The game G =
˙
n, S, A, q, τ, π1 . . . πn

¸
is

a stochastic game with n players and k states. In each
state s ∈ S =

`
s1,. . .,sk

´
each player i chooses an action ai

from its admissible action set Ai (s) according to its strategy
πi (s).

The payoff function τ (s, a) :
Qn

i=1 Ai (s) �→ �n maps the
joint action a =

`
a1,. . .,an

´
to an immediate payoff value for

each player.
The transition function q(s, a) :

Qn
i=1 Ai (s) �→ Δk−1 de-

termines the probabilistic state change, where Δk−1 is the
(k − 1)-simplex and qs′ (s, a) is the transition probability from
state s to s′ under joint action a.

In this work we restrict our consideration to the set of
games where all states s ∈ S are in the same ergodic set.
The motivation for this restriction is two-folded. In the pres-
ence of more than one ergodic set one could analyze the cor-
responding sub-games separately. Furthermore, the restric-
tion ensures that the game has no absorbing states. Games
with absorbing states are of no particular interest in respect
to evolution or learning since any type of exploration will
eventually lead to absorption. The formal definition of an
ergodic set in stochastic games is given below.

Definition 2. In the context of a stochastic game G,
E ⊆ S is an ergodic set if and only if the following con-
ditions hold:
(a) For all s ∈ E, if G is in state s at stage t, then at t + 1:

Pr (G in some state s′ ∈ E) = 1, and
(b) for all proper subsets E′ ⊂ E, (a) does not hold.

Note that in repeated games player i either tries to max-
imize the limit of the average of stage rewards

max
πi

lim inf
T→∞

1

T

TX
t=1

τ i (t) (2)

or the discounted sum of stage rewards
PT

t=1 τ i (t) δt−1 with

0 < δ < 1, where τ i (t) is the immediate stage reward for
player i at time step t. While the latter is commonly used
in Q-learning, this work regards the former to derive a tem-
poral difference reward update for learning automata in Sec-
tion 2.3.1.

2.2.1 2-State Prisoners’ Dilemma
The 2-State Prisoners’ Dilemma is a stochastic game for

two players. The payoff matrices are given by

`
A1, B1´=„ 3, 3 0, 10

10, 0 2, 2

«
,
`
A2, B2´=„ 4, 4 0, 10

10, 0 1, 1

«
.

Where As determines the payoff for player 1 and Bs for
player 2 in state s. The first action of each player is cooperate
and the second is defect. Player 1 receives τ1 (s, a) = As

a1,a2

while player 2 gets τ2 (s, a) = Bs
a1,a2 for a given joint ac-

tion a = (a1, a2). Similarly, the transition probabilities are

given by the matrices Qs→s′ where qs′ (s, a) = Qs→s′
a1,a2 is the

probability for a transition from state s to state s′.

Qs1→s2
=

„
0.1 0.9
0.9 0.1

«
, Qs2→s1

=

„
0.1 0.9
0.9 0.1

«

The probabilities to continue in the same state after the

transition are qs1
`
s1, a

´
= Qs1→s1

a1,a2 = 1 − Qs1→s2

a1,a2 and

qs2
`
s2, a

´
= Qs2→s2

a1,a2 = 1 − Qs2→s1

a1,a2 .
Essentially a Prisoners’ Dilemma is played in both states,

and if regarded separately defect is still a dominating strat-
egy. One might assume that the Nash equilibrium strat-
egy in this game is to defect at every stage. However, the
only pure stationary equilibria in this game reflect strategies
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where one of the players defects in one state while cooper-
ating in the other and the second player does exactly the
opposite. Hence, a player betrays his opponent in one state
while being exploited himself in the other state.

2.2.2 Common Interest Game
Another 2-player, 2-actions and 2-state game is the Com-

mon Interest Game. Payoff and transition matrices are given
below. Note that both players receive identical immediate
rewards.

A1 = B1 =

„
5 6
6 7

«
, A2 = B2 =

„
0 10
5 0

«

Qs1→s2
=

„
0.9 0.9
0.9 0.1

«
, Qs2→s1

=

„
0.1 0.1
0.1 0.9

«

In this game the highest payoff is gained in state 2 under
joint action (1, 2) which is associate with a low state tran-

sition probability Qs2→s1
1,2 = 0.1. If however the state is

switched, players are encouraged to play either joint ac-
tion (1, 2) or (2, 1) in order to transition back to state 2
with a high probability. While joint action (2, 2) maximizes
immediate payoff in state 1, the low transition probability

Qs1→s2

2,2 = 0.1 hinders the return to state 2.

2.3 Learning automata
A learning automaton (LA) uses the basic policy iteration

reinforcement learning scheme. An initial random policy is
used to explore the environment; by monitoring the rein-
forcement signal the policy is updated in order to learn the
optimal policy and maximize the expected reward.

In this paper we focus on finite action-set learning au-
tomata (FALA). FALA are model free, stateless and inde-
pendent learners. This means interacting agents do not
model each other; they only act upon the experience col-
lected by experimenting with the environment. Further-
more, no environmental state is considered which means
that the perception of the environment is limited to the rein-
forcement signal. While these restrictions are not negligible
they allow for simple algorithms that can be treated ana-
lytically. Convergence for learning automata in single and
specific multi-agent cases has been proven in [3].

The class of finite action-set learning automata consid-
ers only automata that optimize their policies over a finite
action-set A = {1, . . . , k} with k some finite integer. One
optimization step, called epoch, is divided into two parts:
action selection and policy update. At the beginning of an
epoch t, the automaton draws a random action a(t) accord-
ing to the probability distribution π(t), called policy. Based
on the action a(t), the environment responds with a rein-
forcement signal τ(t), called reward. Hereafter, the automa-
ton uses the reward τ(t) to update π(t) to the new policy
π(t+1). The update rule for FALA using the linear reward-
inaction (LR−I) scheme is given below.

πi(t + 1) = πi(t) +

(
ατ (t) (1 − πi(t)) if a (t) = i
−ατ (t) πi(t) otherwise

where τ ∈ [0, 1]. The reward parameter α ∈ [0, 1] determines
the learning rate.

Situating automata in stateless games is straightforward
and only a matter of unifying the different taxonomies of
game theory and the theory of learning automata (e.g. ”player”

and ”agent” are interchangeable, as are ”payoff” and ”re-
ward”). However, multi-state games require an extension
of the stateless FALA model.

2.3.1 Networks of learning automata
For each agent, we use a network of automata in which

control is passed on from one automaton to another [8]. An
agent associates a dedicated learning automata to each state
of the game. This LA tries to optimize the policy in that
state using the standard update rule given in (2.3). Only a
single LA is active and selects an action at each stage of the
game. However, the immediate reward from the environ-
ment is not directly fed back to this LA. Instead, when the
LA becomes active again, i.e. next time the same state is
played, it is informed about the cumulative reward gathered
since the last activation and the time that has passed by.

The reward feedback τ i for agent i’s automaton LAi(s)
associated with state s is defined as

τ i (t) =
Δri

Δt
=

Pt−1
l=t0(s) ri (l)

t − t0(s)
, (3)

where ri (t) is the immediate reward for agent i in epoch
t and t0(s) is the last occurrence function and determines
when states s was visited last. The reward feedback in
epoch t equals the cumulative reward Δri divided by time-
frame Δt. The cumulative reward Δri is the sum over all im-
mediate rewards gathered in all states beginning with epoch
t0(s) and including the last epoch t− 1. The time-frame Δt
measures the number of epochs that have passed since au-
tomaton LAi(s) has been active last. This means the state
policy is updated using the average stage reward over the
interim immediate rewards.

3. PIECEWISE REPLICATOR DYNAMICS
As outlined in the previous section, agents maintain an in-

dependent policy for each state and this consequently leads
to a very high dimensional problem. Piecewise replicator
dynamics analyze the dynamics per state in order to cope
with this problem. For each state of a stochastic game a
so-called average reward game is derived. An average re-
ward game determines the expected reward for each joint
action in a given state, assuming fixed strategies in all other
states. This method projects the limit average reward of a
stochastic game onto a stateless normal-form game which
can be analyzed using the multi-population replicator dy-
namics given in (1).

In general we can not assume that strategies are fixed in
all but one state. Agents adopt their policies in all states in
parallel and therefore the average reward game along with
the linked replicator dynamics are changing as well. The
core idea of piecewise replicator dynamics is to partition the
strategy space into cells, where each cell corresponds to a set
of attractors in the average reward game. This approach is
based on the methodology of piecewise dynamical systems.

In dynamic system theory, the state vector of a system
eventually enters an area of attraction and becomes subject
to the influence of this attractor. In case of piecewise repli-
cator dynamics the state vector is an element of the strategy
space and attractors resemble equilibrium points in the av-
erage reward game. It is assumed that the dynamics in each
cell are reigned by a set of equilibria and therefore we can
qualitatively describe the dynamics of each cell by a set of
replicator equations.
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We use this approach to model learning dynamics in stochas-
tic games as follows. For each state of a stochastic game
we derive the average reward game (Section 3.1) and con-
sider the strategy space over all joint actions for all other
states. This strategy space is then partitioned into cells (Sec-
tion 3.2), where each cell corresponds to a set of equilibrium
points in the average reward game. We sample the strategy
space of each cell (Section 3.3) and compute the correspond-
ing limit average reward for each joint action, eventually
leading to a set of replicator equations for each cell (Sec-
tion 3.4).

More precisely, each state features a number of cells, each
related to a set of replicator dynamics. For each state, a
single cell is active and the associated replicator equations
determine the dynamics in that state, while the active cell of
a particular state is exclusively determined by the strategies
in all other states. Strategy changes occur in all states in
parallel and hence mutually induce cell switching.

3.1 Average reward game
For a repeated automata game, the objective of player i

at stage t0 is to maximize the limit average reward τ̄ i =
lim infT→∞ 1

T

PT
t=t0

τ i (t) as defined in (2). The scope of
this paper is restricted to stochastic games where the se-
quence of game states X (t) is ergodic (see Section 2.2).
Hence, there exists a stationary distribution x over all states,
where fraction xs determines the frequency of state s in X.
Therefore, we can rewrite τ̄ i as τ̄ i =

P
s∈S xsP

i (s), where

P i (s) is the expected payoff of player i in state s.
In piecewise replicator dynamics, states are analyzed sep-

arately to cope with the high dimensionality. Thus, let us
assume the game is in state s at stage t0 and players play
a given joint action a in s and fixed strategies π (s′) in all
states but s. Then the limit average payoff becomes

τ̄ (s, a) = xsτ (s, a) +
X

s′∈S−{s}
xs′P

i `s′´ , (4)

where

P i `s′´ =
X

a′∈Qn
i=1 Ai(s′)

 
τ
`
s′, a′´ nY

i=1

πi
a′

i

`
s′
´!

.

An intuitive explanation of (4) goes as follows. At each stage
players consider the infinite horizon of payoffs under current
strategies. We untangle the current state s from all other
states s′ 	= s and the limit average payoff τ̄ becomes the sum
of the immediate payoff for joint action a in state s and the
expected payoffs in all other states. Payoffs are weighted by
the frequency of corresponding state occurrences. Thus, if
players invariably play joint action a every time the game is
in state s and their fixed strategies π (s′) for all other states,
the limit average reward for T → ∞ is expressed by (4).

Since a specific joint action a is played in state s, the
stationary distribution x depends on s and a as well. A
formal definition is given below.

Definition 3. For G =
˙
n, S, A, q, τ, π1 . . . πn

¸
where S

itself is the only ergodic set in S =
`
s1 . . . sk

´
, we say x (s, a)

is a stationary distribution of the stochastic game G if and
only if

P
z∈S xz (s, a) = 1 and

xz (s, a) = xs (s, a) qz (s, a) +
X

s′∈S−{s}
xs′ (s, a) Qi `s′´ ,

where

Qi `s′´ =
X

a′∈Qn
i=1 Ai(s′)

 
qz

`
s′, a′´ nY

i=1

πi
a′

i

`
s′
´!

.

Based on this notion of stationary distribution and (4) we
can define the average reward game as follows.

Definition 4. For a stochastic game G where S itself is
the only ergodic set in S =

`
s1 . . . sk

´
, we define the average

reward game for some state s ∈ S as the normal-form game

Ḡ
`
s, π1 . . . πn´=˙n, A1 (s) . . . An (s) , τ̄ , π1 (s) . . . πn (s)

¸
,

where each player i plays a fixed strategy πi (s′) in all states
s′ 	= s. The payoff function τ̄ is given by

τ̄ (s, a) = xs (s, a) τ (s, a) +
X

s′∈S−{s}
xs′ (s, a) P i `s′´ .

This formalization of average reward games has laid the ba-
sis for the definition and analysis of pure equilibrium cells.

3.2 Equilibrium cells
The average reward game projects the limit average re-

ward for a given state onto a stateless normal-form game.
This projection depends on the fixed strategies in all other
states. In this section we explain how this strategy space
can be partitioned into discrete cells, each corresponding to
a set of equilibrium points of the average reward game.

First, we introduce the concept of a pure equilibrium cell.
Such a cell is a subset of all strategy profiles under which a
given joint action specifies a pure equilibrium in the average
reward game. In a Nash equilibrium situation, no player
can improve its payoff by unilateral deviation from its own
strategy πi. In the context of an average reward game, all
strategies including πi (s′) are fixed for all states s′ 	= s.
Therefore, the payoff τ̄ i (s, a) (see (4)) depends only on the
joint action a in state s. Hence, the equilibrium constraint
translates to:

∀i∀ai′∈Ai(s) : τ̄ i (s, a) ≥ τ̄ i
“
s, ai. . . ai−1,ai′,ai+1. . . an

”
Consequently, this leads to the following definition of pure
equilibrium cells.

Definition 5. We call C (s, a) a pure equilibrium cell of
a stochastic game G if and only if C (s, a) is the subset of
all strategy profiles π =

`
π1 . . . πn

´
under which the following

condition holds

∀i∀a′ : τ̄ i (s, a) ≥ τ̄ i `s, a′´ ,

where τ̄ is the payoff function of the average reward game
Ḡ
`
s, π1 . . . πn

´
; a and a′ are joint actions where ∀j �=i : a′j = aj.

Thus, a is a pure equilibrium in state s for all strategy pro-
files π ∈ C (s, a).

Note that τ̄ is independent of the players’ strategies in s.
Hence, we can express the cell boundaries in state s = si as a
function of the profiles π

`
s1
´
. . . π

`
si−1

´
, π
`
si+1

´
. . . π

`
sk
´
,

i.e. players’ strategies in all but state s. However, pure equi-
librium cells might very well overlap for certain areas of this
strategy space [9]. Therefore, we consider all possible combi-
nations of equilibrium points within one state and partition
the strategy space of all other states into corresponding dis-
crete cells.

3.3 Strategy space sampling
The partitioned strategy space is sampled in order to com-

pute particular average reward game payoffs that in turn are
used to obtain the set of replicator equations. For each state
and each discrete cell, the corresponding strategy space is
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scanned using an equally spaced grid. Each grid point de-
fines a specific joint strategy of all states but the one under
consideration. Average reward game payoffs are averaged
over all grid points and the resulting payoffs are embedded
in the set of replicator equations RDcs for the specified cell
c and state s.

3.4 Definition
This section links average reward game, pure equilibrium

cells and strategy space sampling in order to obtain a coher-
ent definition of piecewise replicator dynamics.

For each state s = si the strategy space in all remain-
ing states is partitioned into discrete cells. Each cell cs ⊂
A
`
s1
´×. . .×A

`
si−1

´×A
`
si+1

´×. . .×A
`
sk
´

refers to some
combination of pure equilibria. This combination might as
well resemble only a single equilibrium point or the empty
set, i.e. no pure equilibrium in the average reward game. As
explained in the previous section, the strategy subspace of
each cell is sampled. As a result, we obtain payoff matrices
which in turn lead to a set of replicator equations RDcs for
each cell. However, the limiting distribution over states un-
der the strategy π has to be factored into the system. This
means that different strategies result in situations where cer-
tain states are played more frequently than others. Since we
model each cell in each state with a separate set of repli-
cator dynamics, we need to scale the change of π (s) with
frequency xs. The frequency xs determines the expected
fraction of upcoming stages played in state s.

Definition 6. The piecewise replicator dynamics are de-
fined by the following system of differential equations:

dπ (s)

dt
= RDcs (π (s)) xs,

where cs is the active cell in state s and RDcs is the set of
replicator equations that reign in cell cs. Furthermore, x is
the stationary distribution over all states S under π, withP

s∈S xs (π) = 1 and

xs (π) =
X
z∈S

2
4xz (π)

X
a∈Qn

i=1 Ai(s)

 
qs (z, a)

nY
i=1

πi
ai

(s)

!35
Note that xs is defined similarly to Definition 3. However,
here xs is independent of joint action a in s but rather as-
sumes strategy π (s) to be played instead.

4. ANOMALIES OF PIECEWISE

REPLICATOR DYNAMICS
This section shows the shortcomings of piecewise repli-

cators by comparing the dynamics of learning automata to
predictions from the piecewise model. The layered sequence
plot in Figure 1 is used to observe and describe the differ-
ent dynamics. Each still image consists of three layers, the
learning trace of automata (LR−I with a = 0.001), cell par-
titioning and a vector field. The learning trace in state 1
are plotted together with the cell boundaries for state 2
and vice versa. Depending on the current end-point loca-
tion of the trajectory in state 1 we illustrate the dynamics
in state 2 by plotting the vector field of the correspond-
ing set of replicator equations. For the particular example
in Figure 1, the trajectory in state 2 does not cross any
cell boundaries and therefore the vector field in state 1 re-
mains unchanged during the sequence. The learning trace in
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Figure 1: Trajectory plot for learning automata in
the 2-State Prisoners’ Dilemma. Each boundary in-
tersection in state 1 (left column) causes a qualita-
tive change of dynamics in state 2 (right column).
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Figure 2: Cell partitioning and location of specific
strategy profiles, i.e. (0.015, 0.015), (0.06, 0.01) and
(0.01, 0.06), for vector field sensitivity analysis in the
2-State Prisoners’ Dilemma.

state 1 follows this vector field and eventually converges to
joint action cooperate-defect (C, D) resembling point (1, 0)
in the strategy space. During this process, the trajectory
intersects multiple cell boundaries and the vector field in
state 2 changes accordingly. We consult Figure 2 to identify
cell labels for the partitioning plotted in the strategy space
of state 1.

The first row of Figure 1 shows that the current end-point
of the learning trajectory in state 1 is within the boundaries
of cell (C, D). This means, cell (C, D) is active in state 2
and the dynamics are reigned by this attractor. In fact, we
see that the policies of learning automata are attracted by
this equilibrium point and approximately follow the vector
field toward (1, 0).

Let us now consider the third and fifth row. Here, the cur-
rent end-points of the trajectories in state 1 correspond to
the cells (D, C) and (C, D) respectively. In the former case,
the vector field plot shows arrows near the end of the trace
that point toward (0, 1). However, the automata policies
continue on an elliptic curve and therefore approximately
progress into the direction of (1, 1) rather than (0, 1). The
latter case shows even greater discrepancies between vector
field and policy trajectory. The vector field predicts move-
ment toward (0, 0), while the trajectory trace continues con-
vergence to (0, 1). We now attempt to given an explanation
for these artifacts by performing a sensitivity analysis of
vector field plots.

Figure 2 displays the strategy space partitioning for state 2
depending on strategies in state 1 (left) as well as a magni-
fication of the subspace near the origin (right). We specif-
ically focus on this subspace and compute the average re-
ward games for three strategy profiles, i.e. (0.015, 0.015),
(0.06, 0.01) and (0.01, 0.06). Each strategy profile corre-
sponds to one of three cells, (C, C), (C, D) and (D, C) re-
spectively, as indicated in the clipped section to the right in
Figure 2. The computed average reward game payoff matri-
ces are used to derive the replicator dynamics and visualize
the vector field plots. Figure 3 compares the field plots of
the three specific average reward games with the dynam-
ics for the corresponding cells obtained by sampling. On
the highest level, i.e. presence and convergence to strong
attractors, all pairs match. This is clear, since average re-
ward games for specific points within a cell sustain the same
equilibrium combination. However, in order to examine the
anomaly in Figure 1 (fifth still image), we consider especially
the direction of field plots in the area around the trajec-
tory end-point, which in this case is circa (0.15, 0.4). In this
area dynamics for cells (C, D) and (D, C) show clear qualita-
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Figure 3: Vector field sensitivity analysis for piece-
wise replicator dynamics. Cell replicator equations
are compared to the dynamics of specific average
reward games for the following strategy profiles:
(0.015, 0.015), (0.06, 0.01) and (0.01, 0.06).

tive differences from the field plots for corresponding specific
strategy profiles (0.06, 0.01) and (0.01, 0.06). Furthermore,
the field plots to the left in Figure 3 are consistent with the
learning trajectory sequence displayed in Figure 1.

The vector field plots of piecewise replicator dynamics pre-
dict the learning dynamics only on the highest level (see Fig-
ure 3). However, due to the coupling of states, qualitative
anomalies occur. Furthermore, piecewise replicators show
discontinuities due to discrete switching of dynamics each
time a cell boundary is crossed. These discontinuities are
neither intuitive nor reflected in real learning behavior. Ad-
ditionally, these artifacts potentially yield profound impact
if the number of states is increased.

The next section aims to alleviate the shortcomings of
piecewise replicators by proposing a new approach to model
the learning dynamics in stochastic games more accurately.

5. STATE-COUPLED REPLICATORS
Piecewise replicators are an implementation of the paradigm

of piecewise dynamical systems and therefore inherently lim-
ited to a qualitative approximation of the underlying, intrin-
sic behavior. Anomalies occur if this approximation is defi-
cient for some area in the strategy space. This observation
directly suggest either a) to refine the cell partitioning or b)
to strive for direct state coupling, discarding the piecewise
model.

Refining the cell partitioning is not straightforward. One
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might consider to separate the disjointed parts of the strat-
egy subspace, previously covered by a single cell. More pre-
cisely, this would lead to two separate cells each for pure
equilibria (C, D) and (D, C) in state 2 of the 2-State Pris-
oners’ Dilemma. However, this approach is not in line with
the argumentation that a cell should reflect the subspace in
which a certain attractor reigns.

The second option is most promising since it eliminates
undesired discontinuities induced by discrete cell switching
and furthermore avoids approximation anomalies. Accord-
ingly, the next section derives a new model for state-coupled
learning dynamics in stochastic games. We call this ap-
proach state-coupled replicator dynamics.

5.1 Definition
We reconsider the replicator equations for population π

as given in (1):

dπi

dt
=
ˆ
(Aσ)i − π′Aσ

˜
πi (5)

Essentially, the payoff of an individual in population π, play-
ing pure strategy i against population σ, is compared to the
average payoff of population π. In the context of an average
reward game Ḡ with payoff function τ̄ the expected payoff
for player i and pure action j is given by

P i
j (s) =

X
a′∈Q

l �=i Al(s)

0
@τ̄ i (a)

Y
l�=i

πl
al

(s)

1
A ,

where a = (a1 . . . ai−1, j, ai . . . an). This means that we enu-
merate all possible joint actions a with fixed action j for
agent i. In general, for some mixed strategy ω, agent i re-
ceives an expected payoff of

P i (s, ω) =
X

j∈Ai(s)

2
4ωj

X
a′∈Q

l �=i Al(s)

0
@τ̄ i (s, a)

Y
l�=i

πl
al

(s)

1
A
3
5 .

If each player i is represented by a population πi, we can
set up a system of differential equations, each similar to
(5), where the payoff matrix A is substituted by the average
reward game payoff τ̄ . Furthermore, σ now represents all
remaining populations πl where l 	= i.

Definition 7. The multi-population state-coupled repli-
cator dynamics are defined by the following system of differ-
ential equations:

dπi
j (s)

dt
=
h
P i (s, ej) − P i

“
s, πi (s)

”i
πi

j xs (π) ,

where ej is the jth-unit vector. P i (s, ω) is the expected pay-
off for an individual of population i playing some strategy ω
in state s. P i is defined as

P i (s, ω) =
X

j∈Ai(s)

2
4ωj

X
a′∈Q

l �=i Al(s)

0
@τ̄ i (s, a)

Y
l�=i

πl
al

(s)

1
A
3
5 ,

where τ̄ is the payoff function of Ḡ
`
s, π1 . . . πn

´
and

a = (a1 . . . ai−1, j, ai . . . an) .

Furthermore, x is the stationary distribution over all states
S under π, with X

s∈S

xs (π) = 1 and
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Figure 4: Comparison between a single trajectory
trace of learning automata, piecewise and state-
coupled replicator dynamics in the 2-State Prison-
ers’ Dilemma. The piecewise replicator dynamics
clearly show discontinuities, while the state-coupled
replicators model the learning dynamics more accu-
rately.

xs (π) =
X
z∈S

2
4xz (π)

X
a∈Qn

i=1 Ai(s)

 
qs (z, a)

nY
i=1

πi
ai

(s)

!35 .

In total this system has N =
P

s∈S

Pn
i=1 |Ai (s) | replicator

equations.

Piecewise replicator dynamics rely on a cell partitioning,
where the dynamics in each cell are approximated by a static
set of replicator equations. In contrast, the state-coupled
replicator dynamics use direct state-coupling by incorporat-
ing the expected payoff in all states under current strategies,
weighted by the frequency of state occurrences.

5.2 Results and discussion
This section sets the newly proposed state-coupled repli-

cator dynamics in perspective by comparing their dynamics
with learning automata and piecewise replicators.

Figure 4 plots a single trace each for learning automata as
well as piecewise and state-coupled replicator dynamics in
the 2-State Prisoners’ Dilemma. All three trajectories con-
verge to the same equilibrium point. The piecewise replica-
tor dynamics clearly show discontinuities due to switching
dynamics, triggered at each cell boundary intersection. Fur-
thermore, the trace in state 2 enters the subspace for cell
(D, D) in state 1, while both trajectories for learning au-
tomata and state-coupled replicators remain in cell (C, D).



AAMAS  2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary 

796

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
FALA, state 1

π
1
1(s1)

π
1
2(s1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
FALA, state 2

π
1
1(s2)

π
1
2(s2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Piecewise RD, state 1

π
1
1(s1)

π
1
2(s1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Piecewise RD, state 2

π
1
1(s2)

π
1
2(s2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
State−coupled RD, state 1

π
1
1(s1)

π
1
2(s1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
State−coupled RD, state 2

π
1
1(s2)

π
1
2(s2)

Figure 5: Comparison between trajectory traces
of learning automata, piecewise and state-coupled
replicator dynamics in the 2-State Prisoners’
Dilemma. Initial action probabilities are fixed in
state 1 while a set of 8 random strategy profiles is
used in state 2. Wrong convergence and discontinu-
ities are observed for piecewise replicators.

This comparison clearly shows that state-coupled replicators
model the learning dynamics more precisely.

In Figure 5 we compare multiple trajectory traces origi-
nating from one fixed strategy profile in state 1 and a set
of randomly chosen strategies in state 2. This allows to
judge the predictive quality of piecewise- and state-coupled
replicator dynamics with respect to the learning curves of
automata games.

Finally, Figure 6 presents trajectory plots for the Com-
mon Interest Game. Automata games and learning dynam-
ics modeled by state-coupled replicator dynamics are com-
pared. The strong alignment between model and real learn-
ing traces are evident in this game just as for the 2-State
Prisoners’ Dilemma.

The new proposed state-coupled replicator dynamics di-
rectly describe the coupling between states and hence no
longer rely on an additional layer of abstraction like piece-
wise cell dynamics. We observe in a variety of results that
state-coupled replicator dynamics model multi-agent rein-
forcement learning in stochastic games by far better than
piecewise replicators.

6. CONCLUSIONS
We identified shortcomings of piecewise replicator dynam-

ics, i.e. discontinuities and occurrences of qualitative anoma-
lies, and ascertained cause and effect. State-coupled replica-
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Figure 6: Comparison between trajectory traces of
learning automata and state-coupled replicator dy-
namics in the Common Interest Game. Initial action
probabilities are fixed in state 2 while a set of 8 ran-
dom strategy profiles is used in state 1.

tor dynamics were proposed to alleviate these disadvantages.
The preceding formalization of piecewise replicators was de-
liberately factored into the new approach. Finally, this work
delivered a comparative study of finite action-set learning
automata as well as piecewise and state-coupled replicator
dynamics. State-coupled replicators have been shown to pre-
dict learning dynamics in stochastic games more accurately
than their predecessor, the piecewise model.

This research was partially funded by the Netherlands Or-
ganisation for Scientific Research (NWO).
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